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a b s t r a c t

The bifurcations of dynamical systems, described by a second-order differential equation with periodic
coefficients and an impact condition, are investigated. It is shown that a continuous change in the coeffi-
cients of the system, during which the number of impacts of the periodic solution increases, leads to the
occurrence of a chaotic invariant set.
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The properties of dynamical systems with impact are the same in many respects as the properties of systems of ordinary differential
equations. The existence, uniqueness and continuity of the solutions of vibro-impact systems have been studied1 with respect to the initial
data and parameters. Chaotic oscillations2–12 can be observed in systems with impacts, and it has been suggested5–10,12 that the existence
of periodic solutions corresponding to a zero velocity impact is one of the causes of these. So-called grazing bifurcation5,8–10 is associated
with this phenomenon. Numerical experiments have been described which point to the possibility of the existence of a strange attractor
in a half-neighbourhood of a parameter bifurcation value. It is shown below that this bifurcation leads to the formation of invariant sets
which are analogous to a Smale horseshoe.13

1. Formulation of the problem

Consider an interval J = [0, �*] and a continuous function f(t, x, y, �) which acts from R2 × J into R2 and is C2-smooth with respect to its
arguments. We will assume that f(t, x, y, �) f(t + T(�), x, y, �), where T(�) is C2-smooth function in the interval J which is isolated from
zero. The period T(�) can be assumed to be independent of � by making the substitution t′ = tT(0)/T(�).

Consider the system

(1.1)

Put

We will assume that system (1.1) is defined for (t, x, y, �) ∈R× � × J, and an impact, defined by the following conditions, occurs when
the solutions reach the value x = 0.

Condition C1. Suppose z(t) = (x(t), y(t)) is the solution of the problem. If x(t0) = 0, then, for a certain constant r > 0,

(1.2)

Condition C2. If z(t0 − 0) = 0, f0(t0, �) ≤ 0 and the quantity t1 is such that f0(t, �) ≤ 0 for all t ∈ I = [t0, t1), then z(t)|I 0.
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We will call the resulting vibro-impact system System A and suppose z(t, t0, z0, �) is the value of the solution of this system with the
initial data z(t0) = z0 at an instant t (if it is defined and unique)

Conditions C1 and C2 correspond to the case of a fixed limiter. If the limiter is movable and its position is described by the function b(t,
�), the problem can be reduced to the initial problem by making the replacement

System (1.1) takes the form

and, if the function b(t, �) is C4-smooth and has a period T, then the function f1, as well as f, will be C2-smooth and will have a period T
with respect to the argument t.

2. The dependence of the solutions on the initial data and the parameter

Since the velocity corresponding to the variable y changes discontinuously in the case of impacts, the integral continuity theorem is
inapplicable. Nevertheless, the following two lemmas hold.

Lemma 2.1. Suppose that, for a certain �0, System A has a solution z(t) = (x(t), y(t)) with initial data z(t0) = z0 which is defined in the interval
t−, t+ and contains the point t0. We will assume that the function x(t) has precisely N roots t− < �0

1 < . . . < �0
N < t+ in the interval t−, t+ and

that y(�0
j
) /= (j = 1, . . . , N). A �0 > 0 is then found such that, if |�1 − �0| < �0, |z1 − z0| < �0, |t1 − t2| < �0, the solution z(t, t1, z1, �1) of System

A, corresponding to the value �1 of the parameter � and the initial data z(t1) = z1, has precisely N roots �j(t1, z1, �1) (j = 1, . . ., N) in the same
interval. Here, both the instants �j(t1, z1, �1) and the corresponding values of the velocities yj = y(�j(t1, z1, �1) + 0, t1, z1, �1) are C2-smooth
functions of their arguments.

Fixing the solution z(t), we introduce the notation

Lemma 2.2. Suppose �0 is a quantity which exists by virtue of Lemma 2.1 and the numbers �±
j

, defined by the formulae

are such that

Then, in any of the intervals [t−, �−
1 ), (�+

1 , �−
2 ), . . . , (�+

N−1, �−
N), (�+

N, t+], the solution z(t, t1, z1, �1) is a C2-smooth function of its arguments,
where t runs through the corresponding interval and (t1, z1, �1) ∈ U�0

.

We next assume that the following assertion holds.

Condition 1. A family of T-periodic solutions �(t, �) = (�x(t, �), �y(t, �)) of System A exists, which depends continuously on � ∈ J and
possesses the following properties (Fig. 1):

Fig. 1.
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1) when � > 0, the component �x(t, �) has exactly N + 1 roots �0(�), . . ., �N(�) in a period,
2) the velocities of the impacts yk(�) = �y(�k(�) + 0, �) are such that

(2.1)

3) the instants �k(�) and the impact velocities yk(�) depend continuously on the parameter � in the domain of definition.

Without loss of generality, it can be assumed that �0(�) 0. This can be achieved by making the replacement of variables t′ = t − �0(�),
extended in a continuous manner when � < 0. Fixing a small �, we consider a Poincaré mapping for System A which is defined by the
formula

For sufficiently small positive � and �, the mapping F is C2-smooth in a certain neighbourhood of a point �(−�, �). Suppose that

The mapping F generates a discrete dynamical system

(2.2)

3. Separatrix

It follows from relations (2.1) that, in the case of small � and �,

(3.1)

We will denote the set of initial data of solutions which vanish at a certain instant t1 ∈ [−T/2, T/2] by ��, �:

Lemma 3.1. If the parameters � and � are sufficiently small, the intersection of ��, � with a small neighbourhood of zero is a graph of the
C2-smooth function x = ��, �(y). In addition,

(3.2)

Proof. We consider ς ∈ ��, �. Suppose the value t0 is such that

As s0, we choose the largest number such that the function x(t0 + s) does not have roots, apart from s = 0, in the interval −s0, s0. Then,
when s ∈ (−s0, s0),

(3.3)

We will show that, if the quantity t0 is sufficiently close to −�, then s0 ≥ |t0 + �|. If this is not so, a sequence tk
0 → −� (without loss

of generality, we assume that tk
0 > −�), a sequence tk

1 ∈ [−�, tk
0] and a sequence of solutions zk(t) = (xk(t), yk(t)) of System A for which

zk(tk
0) = 0, xk(tk

1) = 0 are found. Regardless of whether or not the function xk(t) vanishes in the interval (tk
1, tk

0), instants tk
2 ∈ (tk

1, tk
0) are

found such that xk(tk
2) = 0 and instants tk

3 ∈ (tk
1, tk

0) such that ẍk(tk
3) ≤ 0. At the same time, tk

3 → −�, xk(tk
3) → 0, ẋk(tk

3) → 0. However, then
ẍk(tk

3) → f0(−�, �) which contradicts inequality (3.1).
Differentiating equality (3.3), we obtain ẋk(t0 + s) = 2x2s + 3x3s2 + . . .. On the other hand, x2 = ẍ(t0)/2 → f0(−�, �) when t0 → −�. This

means that equalities (3.2) hold.

4. Basic result

We introduce the matrix

into the treatment. It is correctly defined since, in the case of small positive values of � and �, the number of zeroes of the first component
�x(t, �) of the solution �(t, �) in the intervals [�, T − �] is equal to n and the values of the corresponding velocities �y(t, �) are non-zero.
Suppose �0 = detA0. We assume that

(4.1)
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Theorem. With the above assumptions, values of �0 > 0 and �0 > 0 are found such that, for any � ∈ (0, �0), � ∈ (0, �0) system (2.2) is chaotic14

and, in fact, a number m ∈N and a compact set K = K�, �, which is invariant with respect to the mapping Fm, are found such that the following
conditions are satisfied:

1) the mapping Fm has infinitely many periodic points in the set K�, �;
2) the periodic points of the mapping Fm are dense everywhere in K�, �;
3) a point p�, � ∈ K�, � exists, the orbit of which {Fmn(p�,�) : n ∈Z} is dense in K�, �.

5. Grazing

We will now prove the theorem. Since all the mappings F�, � for a fixed value of � are associated, it is sufficient to verify the assertion
of the theorem in the case of every small � for a certain �(�) > 0. In this section, we will assume that � > 0 is small and fixed. Suppose z0(t)
is a solution of System A such that, t0 we have z(t0 − 0) = (0, −y0) at a certain instant. The quantity y0 is assumed to be a small parameter.
We put �1 = y2

0.
We now consider the mapping G1(�) = z(t0 + �1 + 0, t0 − �1, �) which is defined in the neighbourhood of the point �0 = (	0, 
0) = z0(t0 − �1).

If the value of � is sufficiently small, then 	0 > 0, 
0 < 0. By virtue of Lemma 3.1 and the fact that the first component of the solution z0(t)
vanishes at the instant t0, we have 	0 ≤ 
2

0/f0(−�1, �).
The mapping G1 is differentiable in the neighbourhood of the point �0, and we estimate the elements of the matrix DG1(�0). We now

consider a point �1 which is sufficiently close to �0. Suppose t1 is the first zero of the component x1(t) of the solution after t0 - �

and that y1 = −y1(t1 − 0). If the quantity � is small, there are no other zeroes of the function x1(t) in the interval [t0 − �1, t0 + �1]. We now
put

We agree to denote any value of � which satisfies the inequality |�| ≤ C|ym
0 | by the symbol O(ym

0 ) (the constant C is independent of �1).
The variational system in the case of system (1.1) has the form

(5.1)

Since the first component x1(t) of any solution z1(t) is sufficiently close to z0(t), there is a single root t = t1 in the interval [t0 − �1, t0 + �1]
and, according to the theorem on the differentiability of solutions with respect to the initial data, we have

Then,8

(5.2)

Here, detB1 = r2 + O(y0). Suppose t− < t0 < t+ and R is a small square, lying in the small left half-neighbourhood of the curve �. It then
follows from equality (5.2) that the set R1 = {z(t+, t−, z0, �) : z0 ∈ R} has the form shown in Fig. 2.

6. Estimates of the Lyapunov exponents

For a fixed value of � > 0, we put

We represent the mapping F in the form of the composition

The matrix DF2(F1(z�,�1
)) tends to A0 when � → 0, and the matrix DF1(z�,�1

) has the form of (5.2), where y0 = y0(�), �0 = f0(0, �).
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Fig. 2.

We introduce the notation

Then,

(6.1)

Since detD1 = −r�0 + O(y0), when inequalities (4.1) are satisfied and in the case of small �, the matrix D1 has the eigenvalues

(6.2)

We will now agree, when speaking of vectors, to have columns in mind but to write them in the form of rows. The eigenvector u1,
corresponding to the eigenvalue 1, is equal to (a12 + O(y0), a22 + O(y0)). Since a12 /= 0, this vector is not collinear with the vector (0,1). The
matrix D−1

1 has the form

(6.3)

whence it follows that the eigenvector of the matrix D−1
1 , corresponding to −1

2 , satisfies the asymptotic estimate u2 = (O(y0), 1 + O(y0)). It
will also be the eigenvector of the matrix D1 corresponding to 2.

We now consider �2 = y0(�)1/2. Suppose �(t) is the fundamental matrix of system (5.1), which satisfies the condition �(�1) = E. Then,

It is obvious that the eigenvalues ̂1 and ̂2 of the matrix D2 = DF(z�,�2
) satisfy asymptotics which differ from (6.2) in the replacement

of O(y0) by O(�2) while the limiting directions of the corresponding eigenvectors are the same as in the case of the matrix D1. We next
consider � = �2. We note that, for any point p from a sufficiently small neighbourhood z�, � in the case of small �, the matrices DF(p) and
DF−1(p) have the form (6.1) and (6.3) respectively, with replaced O(y0) by O(�2) and their eigenvalues satisfy the asymptotic estimates (6.2)
with the same changes. An analogous assertion also holds for the eigenvectors.

7. Homoclinic point

Consider the sets

The mapping F is differentiable at the points of the set V− and the moduli of the eigenvalues of the corresponding Jacobian matrix are
not equal to unity if the parameter � is small. Then, by virtue of Perron’s theorem, a stable manifold Ws and an unstable manifold Wu of
the mapping F exist in the neighbourhood of the point z�, �. They are both curves which are smooth in the neighbourhood of the point
Ws and the corresponding tangential vectors at the point z�, � are equal to (0, 1) and (a12, a22), apart from quantities of the order of O(�).
We extend these manifolds up to the invariant manifolds and, here, the resulting sets, generally speaking, will consists of not more than a
denumerable number of piecewise-smooth curves.
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Fig. 3.

In the neighbourhood of z�, �, we introduce the coordinates x̃ and ỹ, which depend smoothly on x and y, such that the following conditions
are satisfied:

1) the point z�, � corresponds to the values x̃ = ỹ = 0;

2) lim
�,�→0+

∂(x̃, ỹ)
∂(x, y)

(z�,�) =
∥
∥
∥
∥

1 0
a12 −a22

∥
∥
∥
∥

,

3) in a certain neighbourhood of the point z�, �, the curves defined by the conditions ỹ = 0 and x̃ = 0 are subsets of the manifolds Ws and
Wu respectively.

Lemma 7.1. For small values of �, the manifolds Ws and Wu transversely intersect at a certain point p /= z�, � (Fig. 3).

Proof. We put

The manifold Wu intersects the curve ��, � at a certain point qu. We denote the arcs of the manifold Wu, bounded by the point z�, � on one
side and by the curve ��, � (or the Oy axis) on the other side, by the symbols lu+ and lu− (Fig. 3, a). We denote one of the arcs F(lu±) which
contains the point qu, by Lu and its length by �u and define qu

1 = F(qu). Suppose ls+ and ls− are arcs of the manifold Ws, which are bounded
on one of the sides by the point z�, � and lie as a whole in the domain V−. We denote the smaller of their lengths by the symbol �s.

Suppose dij are the elements of the matrix A2
0. In the case of small �, the point qu

1 may be as close to z�, � as desired but, at the same
time, lies in the domain V+. Then, when � → 0, the matrix DF(qu

1) can be as close as desired to the matrix A0 and the product of this matrix
and the vector � = (a12, a22) can be as close as desired to the vector (d12, d22). In the neighbourhood of the point qu

1, the manifold Wu is not
smooth. When � → 0, the vectors which are tangential to the curve Lu

1 = F(Lu)\Lu uniformly tend to the vector (d12, d22). The existence in
the case of the system

of a solution (X0, Y0) ∈ (0, 1) × (−∞, 1) is a sufficient condition for the curve Lu
1 to intersect the manifold Ws for small �. It can be verified

by direct calculations that

A solution of the required form is then found if TrA0 < −1 and a12 > 0. We shall call these conditions Case A.
Another mechanism for the appearance of a homoclinic point is possible (Fig. 3, b). Suppose the manifold Ws intersects the curve ��, �,

and qs is the point of the corresponding intersection. The set F−1(ls−) then contains the arc Ls, one of the ends of which is the point qs, and
the tangential vectors at any of its points uniformly tend to the vector A−1

0 (0, 1) = 1/�0(−a12, a11). The existence in the case of the system

of a solution (X1, Y1) ∈ (0, 1) × (−∞, 1) is a sufficient condition for the curves Ls and Lu to intersect for small �. It can be verified by direct
calculations that

Then, Ls and Lu intersect if TrA0 < −�0 and a12 > 0. We shall call these conditions System B. By virtue of condition (4.1), one of the cases
A or B holds if a12 > 0. The lemma is proved.
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8. Symbolic dynamics

The Smale–Birkhoff theorem14 on the existence of a chaotic set in the neighbourhood of a homoclinic point is formally inapplicable in
this case since the mapping F is discontinuous. Nevertheless, an assertion which is analogous to the above mentioned theorem also holds
in the case being considered. We shall assume below, without loss of generality, that Case B holds and, at the same time, a12 > 0. Case A is
treated in a similar manner.

Consider the neighbourhood Q0 of the point z�, �, defined by the conditions |x̃| ≤ �s, |ỹ| ≤ �u (Fig. 4) and denote the boundaries of Q0
corresponding to x̃ = ±�s and ỹ = ±�u by ∂±

x and ∂±
y . Assuming that n is an integer, we put Qn = Fn(Q0). We select positive values of �s and

�u such that the inequality �s ≥ 2�u is satisfied and, at the same time, positive numbers m+ and m− are found such that

for any −m− < j < m+.
By virtue of Lemma 7.1, the set Q−m− ∩ Qm+ comprises the minimum of the two connected components, one contains the point z�, �

and the other contains the point p. We denote these components by H̃0 and H̃1 and put m = m+ + m−, Fm(H̃0), H1 = Fm(H̃1), H = H0 ∪ H1
(Fig. 5). We will show that the set K = ∩

n ∈Z
Fmn(H) satisfies all the requirements of the theorem which has been proved. It is obvious

that the set K is invariant under the mapping Fm and that it is compact and non-empty since it contains the point z�, �. Moreover,
it does not intersect either the pre-images of the Oy axis under the mappings Fmk(k ∈Z) or the pre-images of the curve ��, � under
the same mappings. Consequently, in the case of integer n, a neighbourhood 	 of the set K exists such that Fmn|	 are C2-smooth
mappings.

Fig. 4.

Fig. 5.
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Lemma 8.1. For any N ∈N and any set of numbers i = (i0, . . ., iN) such that ik ∈ {0, 1}, the set

is non-empty for any k = 0, ..., N.

Proof. Consider an arbitrary curve � joining the segments ∂+
x and ∂−

x of the boundary of the set Q0, which is the graph of the C1-smooth
function x̃ = h(ỹ) such that

(8.1)

Repeating the proof of the -lemma, well-known in the theory of structurally stable systems (Ref. 15, Theorem 6.1), it can be shown that,
if �, �s and �u are sufficiently small, an inclusion of the curve Fm(�) in the set Ws exists which can be as close as desired to an identity
inclusion in the metric C1. In particular, this means that the curve F−m(�) contains two arcs: �0 and �1 which join the segments ∂+

x and
∂−

x and satisfy condition (8.1). We now fix the index i. It follows from what has been said above that the pre-image of any curve �, which
satisfies condition (8.1), contains the curve �i0

⊂ Hi0 joining the segments ∂+
x and ∂−

x . Applying the same reasoning to �i0
, we obtain that

the curve �i0i1 ⊂ F−m(�i0
) ∩ Hi1 exists. As the final result, we obtain the curve

The assertion of the lemma then follows from the fact that FmN(
i0i1...iN ) ⊂ Hi. A unique sequence

such that Fmn(z) ∈ Hin for any n ∈Z, corresponds to each point z ∈ K. It follows from Lemma 8.1 that the corresponding point z can be picked
out for any sequence i. By virtue of the hyperbolic form of the diffeomorphism Fm in the neighbourhood of the set K, the point z ∈ K is
uniquely defined by the sequence i(z). Thus, the mapping Fm in the set K is topologically associated with a mapping of a left-shift in a set
of sequences of zeroes and ones, which are infinite on both sides, which shows that the assertion of the theorem holds.

Acknowledgements

This research was partially financed by the Russian Foundation for Basic Research (05-01-01079-a). the Scientific Programme of the
Ministry of Education and Science of the Russian Federation “Universities of Russia”, the Grant Committee of the President of the Russian
Federation (MK-489.2007.1), the Programme for the Support of Leading Scientific Schools (NSh-4609.2006.1) and the Vladimir Potanin
Philanthropic Foundation.

References

1. Schatzman M. Uniqueness and continuous dependence on data for one-dimensional impact problem. Math Comput Modelling 1998;28(4–8):1–18.
2. Gorbikov SP, Menshenina AV. Bifurcations leading to chaotic motions in dynamical systems with impact interactions. Differents Uravneniya 2005;41(8):1046–52.
3. Kryzhevich SG. Properties of solutions of Duffing-type equations with impact conditions. Electronic Journal Differentsialnye Uravneniya i Protsessy Upravleniya 2006;2:1–27.
4. Kryzhevich SG, Pliss VA. Chaotic modes of oscillation of a vibro-impact system. Prikl Mat Mekh 2005;69(1):15–29.
5. Budd CJ. Non-smooth dynamical systems and the grazing bifurcation. Nonlinear Mathematics and its Applications, Guildford, 1995. Cambridge Univ. Press; 1996. pp. 219–35.
6. Chin W, Ott E, Nusse HE, Grebogi C. Universal behavior of impact oscillators near grazing incidence. Phys Letters A 1995;201(2):197–204.
7. Holmes PJ. The dynamics of repeated impacts with a sinusoidally vibrating table. J Sound and Vibrat 1982;84(2):173–89.
8. Ivanov AP. Bifurcations in impact systems. Chaos, Solitons and Fractals 1996;7(10):1615–34.
9. de Wegerand J, van de Water W, Molenaar J. Grazing impact oscillations. Phys Rev E 2000;62(2):2030–41.

10. Nordmark AB. Effects due to low velocity impacts in mechanical oscillators. Intern J Bifur Chaos Appl Sci Engrg 1992;2(3):597–605.
11. Pavlovskaia E, Wiercigroch M. Analytical drift reconstruction for visco-elastic impact oscillators operating in periodic and chaotic regimes. Chaos, Solitons and Fractals

2004;19(1):151–61.
12. Whiston GS. Global dynamics of a vibro-impacting linear oscillator. J Sound and Vibrat 1987;118(3):395–424.
13. Smale S. Diffeomorfisms with many periodic points. Different and Combinator Topol. Princeton: Univ. Press, 1965, p. 63–81.
14. Devaney RL. An Introduction to Chaotic Dynamical Systems. Redwood City, CA: Addison-Wesley; 1987. p. 320.
15. Pilyugin SYu. Introduction to Structurally Stable Systems of the Differential Equations. Basel: Birkhaüser; 1992. p. 184.

Translated by E.L.S.


	Grazing bifurcation and chaotic oscillations of vibro-impact systems with one degree of freedom
	Formulation of the problem
	The dependence of the solutions on the initial data and the parameter
	Separatrix
	Basic result
	Grazing
	Estimates of the Lyapunov exponents
	Homoclinic point
	Symbolic dynamics
	Acknowledgements
	References


